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Abstract—Based on the mode-matching procedure, a unified
transverse scattering matrix formulation is presented for the
characterization of a class of waveguide eigenvalue problems,
which include not only closed but also open structures, As
examples, calculations are carried out on the dispersion char-
acteristics of ridged waveguides and its variations, nonradiative
dielectric (NRD) waveguides, groove guides, microstrip lines,
finlines, and coplanar waveguides. Comparisons with published
data are made, which verify the versatility and accuracy of this
method. Besides its generality, this approach is also superior to
some other techniques in simplicity and numerical efficiency.

I. INTRODUCTION

HE eigenvalue problem is one of the most fundamental

problems in electromagnetic theory and engineering, and
a variety of techniques have been developed for the character-
ization of various kinds of waveguiding structures in the past
years [1]-{3]. Usually a different technique is employed for
a different kind of transmission line in view of its simplicity,
accuracy, and numerical efficiency, etc.

Microwave and millimeter-wave systems are being de-
veloped towards higher component densities and increasing
complexity that may consist of various kinds of waveguiding
structures. As a result, attention has been directed in recent
years to generalized approaches that can treat a variety of
transmission lines with complicated configurations. Thus, in
developing a new technique the “generalization” has become
another challenging factor to be considered in addition to its
accuracy and numerical efficiency.

In this paper, based on the mode-matching procedure, the
eigenvalue problems of a class of waveguiding structures
are solved by combining the generalized scattering matrix
technique with the transverse resonance method. The mode-
matching and the transverse resonance method have been
shown to be very versatile and effective in solving electro-
magnetic problems [1]-{3]. However, our theory in this paper
features in the following characteristics:

1) With the generalized scatteting matrix formulation of cas-

caded discontinuities in the transverse plane, the requirement

of a proper choice of the expansion modal terms in the mode-
matching method can be readily satisfied, and the solutions of
eigenvalues converge quickly and correctly.

2) With the proper choice of the reference plane where
the transverse resonance condition is applied, the size of the
final eigenvalue matrix can be the smallest. Moreover, the
eigenvalue matrix possesses the diagonal dominant property
with the diagonal matrix elements of order 1, so that its
determinant is neither too large nor too small. This fact greatly

Fig. 1. Generalized waveguiding structure.

eases the numerical root searching process for the eigenvalue
equation, s

3) Open structures, such as the nonradiative dielectric (NRD)
waveguide [4] and the groove guide [5], [6], etc., can be
treated directly as. special cases of our theory without any
preassumptions. The two open ends in the NRD waveguide and
the groove guide extend to infinity, and they may constitute
an obstacle in applying the finite element method (FEM), the
finite difference method (FDM), and the conventionally used
transverse resonance process [7]. To overcome it, usually an
assumption had to be made that perfect conductor planes were
placed on the two sides of the guide which were far away
from the dielectric strip or the groove [7]. In our approach,
however, as is shown in Section III, such an assumption is not
needed and the two open ends just simplify the final eigenvalue
equation.

4) The formulation is quite general, and a wide variety of
waveguiding structures can be handled with efficiency. Besides
its versatility and flexibility, our theory, as discussed in detail
in Section IlI, also overcomes some of the shoricomings of
the previous techniques used in treating those waveguiding
structures given in Section IIL

Typical examples analyzed in this paper include ridged
waveguides and its variations, NRD waveguides, groove
guides, and planar transmission lines, and numerical results
are compared with. those of other authors. :

II. FORMULATION

Figure 1 shows a generalized - waveguiding structure. It
consists of an arbitrary number of metallic strips deposited on
various dielectric substrate interfaces. In general, the fields in
the dielectric slab-loaded, ridged waveguide may be expressed
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Fig. 2. N-furcated waveguide junction.

as a superposition of the LSE and LSM modes with respect to
the z-direction (i.e., the TE and TM modes with respect to the
transverse y-direction). Following the conventional transverse
resonance procedure [8]-[12], we consider that the LSE and
LSM modes propagate in the transverse direction and couple
cach other at discontinuities of various vertical planes. The
hybrid modes as waveguide fields are formed as a result of
repeated reflections of the LSE and LSM mode waves at
the two ends and discontinuities. Thus, at first we derive the
scattering matrix of the N-furcated waveguide junction, as
shown in Fig. 2, for the LSE and LSM mode excitation, then
we use the generalized scattering matrix technique to obtain
the overall transverse scattering matrix of the cascaded dis-
continuities, and finally we formulate the eigenvalue equation
for the propagation constant by using the transverse resonance
condition.

A. Treatment of the N-Furcated Waveguide Junction

The hybrid mode fields, E and H, are derived from the
electric- and magnetic-type Hertzian potential functions, II°
and IT", as follows:

E =V xV xII° - juuV x " 1)
H =V xVxI"+ jweV x IT°. Q)

Appropriate solutions for II h and IT¢ in the ith waveguide
are derived by using the method of the separation of variables
and are given by
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and the transverse components (with respect to the y-direction)
of the fields are then expressed as
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If the vector-mode functions, €;, and fzin, are defined

by replacing k. with —k, in (5a)—(5d) [14], the following
orthonormality relations are satisfied:

h, N “h
/ e, X h;, -i,dz
h,—L,

for LSE mode
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Fig. 3. Scattering matrix representation of cascaded discontinuities.

propagating modes. According to the definition of the tilded-
mode functions and to (5), it is evident that when no loss is
present the tilded-mode functions are the complex conjugates
of those in (5).

Now the electric and magnetic fields in the ith guide at
z = 0 may be expanded in an infinite sum of LSE- and
LSM-mode components as

A h
Ea(@y)= Y (Abe it 4 B Fint)eh ()
n=0,1,2,--
+ > (Age My 4 By e Fnv)es, (2)
n=1,2,3,...
)
_ Lk .y h
Hy(z,y)= Y. (Abe My — B Munt)RL (o)
n=0,1,2,..
+ Y (AGe Y - BY oMt RS, (x)
n:172737"'

®

where the coefficients, A;, and B,,, represent the amplitudes
of the incident and reflected (with respect to the y-direction)
waves in the sth guide. Using the boundary conditions at
y = 0 and z = 0 and matching the tangential ficlds, F;
and H;, lead to a pair of equations on the tangential compo-
nents of electromagnetic fields. Vector-multiplying the electric

component vector equation successively by f»lm and ftim
and the magnetic component vector equation successively by
el and €5, using the orthonormality relation (6) and taking
truncation on both sides of these equations, we get a set of
linear simultaneous equations in the following matrix form:
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Fig. 4. Application of transverse resonance condition.
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where ¢ = 2,3,---, N.

It is emphasized here that the izalic characters denote space
vectors and the Roman characters denote matrices and column
vectors. As all the space vector mode-functions in the above
integrals are the combinations of sine and cosine functions, the
integrations can be analytically carried out easily. The tilded
functions (R}¢)nm and (R$) .y, are also defined by replacing
k, with —k, in (R"¢),,,, and (R$?),um, respectively. From (9)
and (10), it is not difficult to deduce the scattering matrix S
of the N-furcated junction in a form as shown below:

B! A’£
¢ A
1 1
| _ |S11 Sa2 .
a = [321 Sa :h (11)
N Ay

where
Ses =(I+HR)'(I-HR)=2(I+HR)™ ! -1
(12a)
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Fig. 5. Normalized propagation constant versus frequency for dielec-
tric-loaded single-ridged waveguides; ¢ = 19 mm, b = 9.5 mm, ¢ = 1.7
mm, d = 0.3 mm.
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Fig. 6. Normalized propagation constant versus dielectric slab thickness ¢
for a slotted dielectric-loaded ridge waveguide; a = 26.264 mm, b = 26.882
mm, ¢ = 6.502 mm, d = 11.760 mm, w = 8.026 mm, s = 13.081 mm.

Ss1 =2(I+ HR) 'H = (Sy2 + DH (12b)
Si2 =2R(I+HR)™ ! = R(Sp2 + 1) (12¢)
S11 =S12H-I=RSy; — L (12d)

B. Cascaded Discontinuities

In the case of cascaded discontinuities, there are two ap-
proaches. The first is to combine the transmission matrices of
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Fig. 7. Normalized propagation constant as a function of septum width
s for the first TE mode of dielectric-loaded T-septum waveguides:
bfa = 0.5, w/a = 0.1,d/b = 0.2,t/b = 0.05.
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Fig. 8. Dispersion curve of a nonradiative alumina waveguide.

individual discontinuities for expressing the overall transmis-
sion matrix, and it requires an equal number of modes in any
of the sections connecting discontinuitics. As is well known,
however, the mode-matching analysis usually requires a proper
choice of the number of modal terms retained in the guides
connected to the junction to overcome the relative convergence
problem [10]-[12], and it has been shown in [10] that the
requirement of an equal number of modal terms in any of the
sections may violate the edge condition, resulting in incorrect
numerical solutions. Thus, in this paper, the cascaded discon-
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Fig. 9. Comparison between measured and theoretical values of the cutoff

wavelength A for groove guides of various cross sections. (a) Curves (1) and
(2), where (1) @ = a’ + 20 mm, b—30mm (2)a—a + 20 mm, b = 10
mm. (b) Curves (3) and (4), where (3) ¢ = a' + 40 mm, b = 20 mm, (4)
a =a 4+ 20 mm, b = 20 mm.

tinuity problems are treated by using the second approach, i.e.,
the generalized scattering matrix method [12].

Referring to Fig. 3, the submatrices of the overall scattering
matrix (superscript ¢) of two cascaded junctions, separated by
a uniform line section of length I, are given by

s =sV + sVEDSP DS (13a)
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Fig. 10. Variation of propagation constant versus groove guide aspect ratio
b/a.

s{) = s{VEDS (13b)
s{¥ = sPprsil (13c)
S5 =S8 + s DFS{ DS (13d)

where
(1-Ds¥DsPD)!
S(l)Ds(Z)D)—

U
[ ] (14)

and D" and D® are diagonal matrices whose diagonal ele-
ments are given by

E-=
F
D

ik ipe
Dfm =e Jkyml; Di,=e L (15)

C. Transverse Resonance Condition and Eigenvalue Equation

Out of the uniform sections connecting the discontinuities,
we choose one having the smallest vertical dimension (with
respect to the transverse resonance y-direction, i.e., the hori-
zontal direction), and use S) and S(®) to indicate the overall
scattering matrices of the cascaded discontinuities on its left
and right side, respectively, as indicated in Fig. 4. The column
vectors, A(X) and B(X)| counting for incident and reflected
wave amplitudes, respectively, of matrix S(*) in the left end
region, and vectors A(®) and B(®R) of matrix S(®) in the right
end region, are related through the two end boundaries, which
may be an electric wall (short-circuited) or a magnetic wall
(open-circuited), as follows:

AL = DD BXE).

AW = zDBRPDBEBER) (16)

where the sign & corresponds to the electric (upper one) and
magnetic (lower one) wall, respectively. In the middle section,
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Fig. 11. Normalized propagation constant as a function of frequency for a

suspended microstrip lines. ¢ = 2b = 7.112 mm, s = 0.635 mm, w = 1.0
mm, €, = 9.6.

the forward and backward wave amplitudes are related by
AG) — DM, A/M) — pMBM)

where A and BGY) are the amplitude column vectors of
the incident and reflected modes, respectively, of matrix sT)
in the middle section, and A’®) and B'™) of matrix S®.
The diagonal elements in the diagonal matrices, D(X), D(®)
and D), are defined in a similar way to that of (14) and
(15), with the transverse propagation constant and propagation
length [ of the corresponding section.

Substituting (16) and (17) into the scattermg matrix ex-
pressions of S() and S(®)| the amplitude column vectors,
A(L),B(L),A(R),B(R),A(M), and A’ may be elimi-
nated, and B®) and B'™) are related by

B® = (S{YVEMSE) + sy DMBAD  (18)
B/M) — (Sglf)E(R)Sgg) + Sg;))D(M)B(M) (19)

where E() and E® are defined as
E® = DODE)(I - S%)D(L)D(L))_l
DED®E (I - sPpEDE)-1

For the existence of nontrivial solutions for the linear
simultaneous equations, (18) and (19), the determinant should
vanish, that is, the following eigenvalue equation should be
solved: :

ER =

detG =0 (20)
where
G =I- (S§yEVS + 85D
- (SSPVE®SE + 85D, 1)

For open structures, like the NRD waveguide and the groove
guide, the left and right end extend to infinity, 'so that there

17y
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Fig. 12. Propagation characteristics of the dominant and the first higher odd-
mode in a unilateral finline with mounting grooves. @ = 2b = 1.65 mm,
$=011mm, d = 0.3 mm, t = 5um, e, = 3.75.

will be no reflections from the two ends. In such cases, the
matrices, D) and D(R), representing wave reflections at
the two end boundaries become zero matrices, and the final
eigenvalue matrix G in (21) is much simplified to

G = I-8{EDADgHIpXn), 22)

With such a treatment of the open ends, we succeed in avoiding
the usual assumption of placing perfect conduct planes on the
two far sides of the guide, as pointed out in the introduction.

By using the transverse resonance condition at the section
with the smallest vertical dimension, we obtain the final
eigenvalue matrix G with the smallest size as the number
of modal terms is the smallest in this region.

The commonly used transverse resonance procedure in other

papers [8], [9], on the contrary, is to treat the cascaded

discontinuities from the left to the right or from the right to
the left in sequence, and then to impose the two end boundary
conditons. This procedure usually results in a large eigenvalue
matrix since the two end sections are large in dimensions in
most practical configurations.

Moreover, we may notice that as the coefﬁc:lents of the mode
functions in (5) are normalized, the elements in the scattering
matrices, S() and S(R)7 are of order 1; and that the elements
in the diagonal matrices DX, D) D) exponentially
decay (in the y-direction) for higher evanescent modes, so that

- the eigenvalue matrix G in (21) or (22) is diagonal dominant

with the diagonal elements of order 1. The reduced size of
the eigenvalue matrix and the good property of the matrix
elements enable the numerical computation process to be quite
stable with the determinant of the eigenvalue matrix neither
too large nor too small, thus greatly easing the root searching
process for eigenvalues. This is another merit of our method
against the conventionally used transverse resonance treatment
and is also one of the main different points from the theory of
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Fig. 13. Normalized propagation constant versus frequency in coplanar
waveguide. ¢ = 2b = 3.1 mm, s = 0.22 mm, d = 0.6 mm, w = 0.2
mm, €, = 3.75.

a recent paper [19] which took a similar analysis process for
the characterization of MMIC transmission lines. Usually after
several searching steps, the root of (20) may rapidly converge
to results with good accuracy in the present method.

III. NUMERICAL EXAMPLES AND DISCUSSIONS

The above stated process has been programmed for numeri-
cal calculation. As an illustration of the versatility and validity
of this methqd, results on the dispersion characteristics of some
waveguiding structures are provided, and comparisons with
previous techniques are made.

A. Ridged Waveguide and Its Variations

Ridged waveguide has been on stage for a long years [13],
but is still receiving attentions up to now, and many of its
variations, such as slotted, dielectric loaded ridged waveguides
and T-septum waveguides, have appeared [14]-[16]. Since
the first complete spectrum analysis of a ridged waveguide
was given by Montgomery [13], who used the Ritz—Galerkin
procedure, most of the papers on ridged waveguides and
its variations published since then [14], [15] followed the
same approach. In their analysis, all of the unknown ex-
pansion modal coefficients of fields remained in the final
eigenvalue matrix, so that the size of the matrix was large
which might cause difficulty in computation. When the number
of subregions increases, this problem becomes even more
serious. A recent paper [16] has used a mixed spectral-
domain method to treat ridged waveguide problems, and it is
more flexible and more numerically efficient than the previous
methods. However, it is actually complicated in mathematical
formulations because of the complicated configurations of the
ridged waveguides with multisubregions. Our theory stated in
Section II is simpler and more versatile.
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The frequency dependence of the propagation constant of a
single-ridged waveguide is shown in Fig. 5 which is about the
same for the two dielectric slab loading. As can be seen, our
results agree very well with both calculated results [16] by the
mixed spectral-domain method and the experiment data [17].

Figure 6 shows the dependence of the propagation constant
on the dielectric slab thickness ¢, and it reveals a marked in-
crease in cutoff wavelength when the dielectric slab thickness
increases. Such a dependence can also be observed in Fig. 7,
which shows the propagation constants as a function of the
septum width s of a T-septum waveguide with and without
dielectric loading.

For the correct convergence of the numerical results by the
mode-matching method, it is well known that the modes in
every subregions should be retained according to the ratios
between the sub-region heights. Taking the structure shown in
Fig. 6 as an example, the mode ratio is approximately taken ac-
cording to the ratio b : ¢ : d, and we found that 3 LSE and LSM
modes in the region of height ¢, 6 of height d and 15 of height
b, respectively, are adequate for obtaining converged results.

B. NRD Waveguide and Groove Guide

The NRD waveguide and groove guide are two of several
low-loss waveguides proposed for use at millimeter wave-
lengths [4]-[6]. In Fig. 8, the dispersion curve of a nonradiative
alumina waveguide is illustrated, where the solid line indicates
present results, and the dots those of [4] based on the formula-
tion of the H-guide theory [18]. In Fig. 9, comparisons between
measured and theoretical values of the cutoff wavelength A,
for groove guides of various cross sections are provided. The
solid lines represent our theory, the dashed curves are the first-
order approximation theoretical values [6], and the points are
the measured results of Nakahara and Kurauchi [6]. Figure 10
indicates variation of propagation constant with groove guide
aspect ratio b/a, and good agreement has been found between
our theory and the results of Oliner and Lampariello [5]. The
rule of thumb equivalent network analysis in [5] is simple and
very accurate, but is only valid for the dominat mode.

C. Planar Transmission Lines

Among the published rigorous techniques for analyzing
planar transmission lines are the spectral-domain technique
and the singular integral equation method. Although these
techniques have a very good numerical efficiency, they do
not include the effects of metallization thickness and substrate
mounting grooves. The metallization thickness has been taken
into account in [8], [9] using the mode-matching technique,
but all requires an equal number of modal terms in the.
subregions forming the guide. As has been shown in [10],
this requirement may violate the edge-condition and may fail
to provide accurate results.

Figure 11 shows the effect of the metallization thickness on
the propagation constants of the first even and odd mode in the
suspended microstrip line. A noticeable effect is only observed
on the dominant mode. On the other hand, the effect of the
substrate mounting groove on the propagation characteristics
is quite significant for both the dominant and the first higher
order mode of the unilateral finline, as shown in Fig. 12. As
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pointed out by [11], the cutoff frequency of the first- higher
order mode decreases significantly when the mounting groove
is used, leading to a very large reduction in the single-mode
bandwidth. Finally, the metallization thickness effect on the
propagation constants in coplanar waveguides is illustrated in
Fig. 13. While the influence on the odd mode is negligible,
it is, however, pronounced on the dominant mode over the
whole frequency range. In the above figures, the solid curves
are our results, the dots are those of [11], and the agreements
are excellent.

IV. CONCLUSION

A umﬁed transverse scattering matrix approach has been
presented to analyze transmission line eigenvalue problems.
The formulation allows one to treat a wide variety of waveg-
uiding structures including open structures. Comparisons with
previous approaches prove that it is simple, versatile, accurate,
and efficient. Application of this method to other eigenvalue
problems such as the determination of resonant frequencies of
complex cavities is straightforward.
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