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Transverse Scattering Matrix Formulation for

a Class of Waveguide Eigenvalue Problems
Zhewang Ma, Eikichi Yamashita, Fellow, IEEE, and Shanjia Xu, Senior Member, IEEE

Abstract— Based on the mode-matching procedure, a unified

transverse scattering matrix formulation is presented for the

characterization of a class of waveguide eigenvalue problems,

which include not only closed but also open structures. As

examples, calculations are carried out on the dispersion char-
acteristics of ridged waveguides and its variations, nonradiative
dielectric (NRD) waveguides, groove guides, microstrip lines,

fhdines, and coplanar waveguides, Comparisons with published
data are made, which verify the versatility and accuracy of this
method. Besides its generality, this approach is also superior to

some other techniques in simplicity and numerical efficiency.

I. INTRODUCTION

T HE eigenvalue problem is one of the most fundamental

problems in electromagnetic theory and engineering, and

a variety of techniques have been developed for the character-

ization of various kinds of waveguiding structures in the past

years [1]–[3]. Usually a different technique is employed for

a different kind of transmission line in view of its simplicity,

accuracy, and numerical efficiency, etc.

Microwave and millimeter-wave systems are being de-

veloped towards higher component densities and increasing

complexity that may consist of various kinds of waveguiding

structures. As a result, attention has been directed in recent

years to generalized approaches that can treat a variety of

transmission lines with complicated configurations. Thus, in

developing a new technique the “generalization” has become

another challenging factor to be considered in addition to its

accuracy and numerical efficiency.

In this paper, based on the mode-matching procedure, the

eigenvalue problems of a class of waveguiding structures

are solved by combining the generalized scattering matrix

technique with the transverse resonance method. The mode-

matching and the transverse resonance method have been

shown to be very versatile and effective in solving electro-

magnetic problems [1]–[3]. However, our theory in this paper

features in the following characteristics:
1) With the generalized scattering matrix formulation of cas-

caded discontinuities in the transverse plane, the requirement

of a proper choice of the expansion modal terms in the mode-

matching method can be readily satisfied, and the solutions of

eigenvalues converge quickly and correctly.

2) With the proper choice of the reference plane where

the transverse resonance condition is applied, the size of the

final eigenvalue matrix can be the smallest. Moreover, the

eigenvalue matrix possesses the diagonal dominant property

with the diagonal matrix elements of order 1, so that its

determinant is neither too large nor too small. This fact greatly
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Fig. 1. Generalized waveguiding structure.

eases the numerical root searching process for the eigenvalue

equation.

3) Open structures, such as the nonradiative dielectric (NRD)

waveguide [4] and the groove guide [5], [6], etc., can be

treated directly as. special cases of our theory without any

preassumptions. The two open ends in the NRD waveguide and

the groove guide extend to infinity, and they may constitute

an obstacle in applying the finite element method (FEM), the

finite difference method (FDM), and the conventionally used

transverse resonance process [7]. To overcome it, usually an

assumption had to be made that perfect conductor planes were

placed on the two sides of the guide which were far away

from the dielectric strip or the groove [7]. In our approach,

however, as is shown in Section III, such an assumption is not

needed and the two open ends just simplify the final eigenvalue

equation.

4) The formulation is quite general, and a wide variety of

waveguiding structures can be handled with efficiency. Besides

its versatility and flexibility, our theory, as discussed in detail

in Section III, also overcomes some of the shortcomings of

the previous techniques used in treating those waveguiding
structures gi~en in Section 111,

Typical examples analyzed in this paper include ridged

waveguides and its variations, NRD waveguides, groove

guides, and planar transmission lines, and numerical results

are compared with those of other authors.

II. FORMULATION

Figure 1 shows a generalized waveguiding structure. It

consists of an arbitrary number of metallic strips deposited on

various dielectric substrate interfaces. In general, the fields in

the dielectric slab-loaded, ridged waveguide may be expressed
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Fig. 2. IV-furcated waveguide junction.

as a superposition of the LSE and LSM modes with respect to

the z-direction (i.e., the TE and TM modes with respect to the

transverse y-direction). Following the conventional transverse

resonance procedure [8]–[12], we consider that the LSE and

LSM modes propagate in the transverse direction and couple

each other at discontinuities of various vertical planes. The

hybrid modes as waveguide fields are formed as a result of

repeated reflections of the LSE and LSM mode waves at

the two ends and discontinuities. Thus, at first we derive the

scattering matrix of the N-furcated waveguide junction, as

shown in Fig. 2, for the LSE and LSM mode excitation, then

we use the generalized scattering matrix technique to obtain

the overall transverse scattering matrix of the cascaded dis-

continuities, and finally we formulate the eigenvalue equation

for the propagation constant by using the transverse resonance

condition.

A. Treatment of the N-Furcated Waveguide Junction

The hybrid mode fields, E and H, are derived from the

electric- and magnetic-type Hertzian potential functions, Ife

and llh, as follows:

E= VxVx De–jwpVxlIh (1)

H= VXVXllh+jWNXIIe. (2)

Appropriate solutions for llh and He in the ith waveguide

are derived by using the method of the separation of variables

and are given by

and the transverse components (with respect to the g-direction)

of the fields are then expressed as

eh =fi@.(-.ikz cos k!in(x-ht)i.‘zn

+ k:%. sin k$in(z – hi)iz)e–~kz” (5a)

+ jkz cos k~in(x – h,)iz)e-~kzz

.;. = ~C&(-ke cos I&.(x - h,)i~

(5b)

zzn

+ ~k~ sin t%~in(x – ht)zz)e-~kz” (5C)

l$n = fiC~. (jk, sin kjin (x – h.)im

+ i%~in cos k$,n (x – h,)iz)e-~kzz (5d)

where the y-direction propagation constants k~;~, the wave

impedances Z~;e, and the normalization constants C~e are

defined by

{
6= j

ifn=O

1 ifn#O

{

0,1,2,..., for LSE mode

‘= 1,2,3,.. ., for LSM mode.

If the vector-mode functions, gin and h;n, are defined

by replacing k, with –k, in (5a)-(5d) [14], the following

orthonormality relations are satisfied:

-/

h%

— E;n X h:m . iy dy = &~ (6a)
h.–L,

/

h.

e~n x h~m . iy dx
h.–L.

-/

h,

— E;n X h:m . iy dx = &~ (6b)
ht–L%

/

h,

e~n x h~m . iv dx
h.– L.

J

h.
—— ‘~nxh~m. iYdx=Oe (6d)

h, –L.

where ~nm is the ~onecker delta (= 1 if n = m; = o
if n # m). In the lossless case, k, is purely real for
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Fig. 3. Scattering matrix representation of cascaded discontinuities.

propagating modes. According to the definition of the tilded-

mode functions and to (5), it is evident that when no loss is

present the tilded-mode functions are the complex conjugates

of those in (5).

Now the electric and magnetic fields in the ith guide at

z = O may be expanded in an infinite sum of LSE- and

LSM-mode components as

n=l>2,3,...

n=o, i,2,...

72=1,2) 3,.

(8)

where the coefficients, Ain and BSn, represent the amplitudes
of the incident and reflected (with respect to the y-direction)

waves in the ith guide. Using the boundary conditions at

y = O and z = O and matching the tangential fields, Eit
and ll~t, lead to a pair of equations on the tangential compo-

nents of electromagnetic fields, Vector-multiplying the electric

component vector equation successively by h~m and h~m,

and the magnetic component vector equation successively by

E;m and ~~m, using the orthonormality relation (6) and taking

truncation on both sides of these equations, we get a set of

linear simultaneous equations in the following matrix form:

= [R]

A(L) A(M) A’(M) *(R)

1(L)
t#L) —

/(M)
$R) — /(R)

——
B(L) B(M)#M) B(R)

LEFT END RIGHT END

Fig. 4. Application of transverse resonance condition.

where i=2,3, . . ..N.

It is emphasized here that the italic characters denote space

vectors and the Roman characters denote matrices and column

vectors. As all the space vector mode-functions in the above

integrals are the combinations of sine and cosine functions, the

integrations can be analytically carried out easily. The tilded

functions (R~~)nm and (R~)nm are also defined by replacing

k, with –kZ in (Rke)1. ~~ and (Ry$)~~, respectively. From (9)
and (10), it is not difficult to deduce the scattering matrix S

of the N- furcated junction in a form as shown below:

where

S22 =(I+HR)-l(l– HR) = 2( I+ HR)-1 –I

(12a)
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Fig. 5. Normalized propagation constant versus frequency for dielec-
tric-loaded single-ridged waveguidev a = 19 mm, b = 9.5 mm, c = 1.7
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Fig. 6. Normalized propagation constant versus dielectric slab thickness t
for a slotted dielectric-loaded ridge waveguide; a = 26.264 mm, b = 26.882
mm, c= 6.502 mm, d= 11.760 mm, w = 8.026 mm, s = 13.081 mm.

SZ1=2(I+HR)-lH =(Sa2+I)H (12b)

S12=2R(I+HR)-1 =R(S22+I) (12C)

S11=S12H–1= RS21–I. (12d)

B. Cascaded Discontinuities

In the case of cascaded discontinuities, there are two ap-

proaches. The first is to combine the transmission matrices of
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Fig. 8. Dispersion curve of a nonradiative alumina waveguide.

individual discontinuities for expressing the overall transmis-

sion matrix, and it requires an equal number of modes in any

of the sections connecting discontinuities. As is well known,

however, the mode-matching analysis usually requires a proper

choice of the number of modal terms retained in the guides

connected to the junction to overcome the relative convergence

problem [10]–[12], and it has been shown in [10] that the
requirement of an equal number of modal terms in any of the

sections may violate the edge condition, resulting in incorrect

numerical solutions. Thus, in this paper, the cascaded discon-



1048 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 6/7, JUNE/JULY 1993

140

80

60

140

I I I I I

1— PRESENT METHOD

‘––- N-K THEORY [6]
1

● MEASURED [6]

~ //)
a a’ //

1 I I I I I

o 20 40 60

a’ (mm)

(a)

I I I I I

— PRESENT METHOD

——– N-K THEORY [6]

● MEASURED [6]

:,/:’:,;
////

80 /
/

/ ““”’l _--L-&
60 t=b+

o 20 40 60

a’ (mm)

(b)
Fig. 9. Comparison between measured and theoretical values of the cutoff
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mm. (b) Curves (3) and (4), where (3) a = a’ + 40 mm, b = 20 mm, (4)
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tinuity problems are treated by using the second approach, i.e.,

the generalized scattering matrix method [12].

Referring to Fig. 3, the submatrices of the overall scattering

matrix (superscript t) of two cascaded junctions, separated by

a uniform line section of length 1,are given by

S(t) = S;) + S#EDSfi)DS;)11 (13a)

2°
;N 0.8 -

<

0.7 -

L_E__-I
“o 0.5 1.0 1.5 2.0

b/a

Fig. 10. Variation of propagation constant versus groove guide aspect ratio

b/a.

s#~= s(#EIs~) (13b)

s(t) = S~)DFS;) (13C)

S;; = SE) + S~)DFSfi)DSfi) (13d)

where

E = (I – DS~)DS~)D)-l

F = (I – Sfi)DSfi)D)-l

[1D= ;h ;, (14)

and Dh and De are diagonal matrices whose diagonal ele-

ments are given by

(15)

C. Transverse Resonance Condition and Eigenvalue Equation

Out of the uniform sections connecting the discontinuities,

we choose one having the smallest vertical dimension (with

respect to the transverse resonance g-direction, i.e., the hori-

zontal direction), and use S(L) and S(R) to indicate the overall

scattering matrices of the cascaded discontinuities on its left
and right side, respectively, as indicated in Fig. 4. The column

vectors, A(L) and B@), counting for incident and reflected

wave amplitudes, respectively, of matrix S(L) in the left end

region, and vectors A(R) and B(R) of matrix S(~) in the right

end region, are related through the two end boundaries, which

may be an electric wall (short-circuited) or a magnetic wall

(open-circuited), as follows:

A(L) = @L)D(L)B(~);

A(R) = @R)@)B(~) (16)

where the sign + corresponds to the electric (upper one) and

magnetic (lower one) wall, respectively. In the middle section,
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Fig. 11. Normalized propagation constant as a function of frequency for a

suspended microstrip lines. a = 2b = 7.112 mm, s = 0.635 mm, w = 1.0
mm, e, = 9.6.

the forward and backward wave amplitudes are related by

A(M) = D(”) B’(M); A’(M) = D(”)B(M) (17)

where A(M) and B(M) are the amplitude column vectors of

the incident and reflected modes, respectively, of matrix S(L)
in the middle section, and A’(M) and B’(M) of matrix S (@.

The diagonal elements in the diagonal matrices, D(LJ, D(RJ

and D(M), are defined in a similar way to that of (14) and

(15), with the transverse propagation constant and propagation

length 1 of the corresponding section.

Substituting (16) and (17) into the scattering matrix ex-

pressions of S@) and S(RJ, the amplitude column vectors,
A(L), B(L), A(R), B(R), A(M), and A’(M), may be elimi-

nated, and B(M) and B’(M) are related by

B(v) = (S~)E@)S~) + S~jD(”)B’@’) (18)

B’(M) = (S~~)E(R)S[:) + S\:))D(M)B@) (19)

where E@) and E(R) are defined as

E(L) = D(~)D(~)(l _ S~)D@)D(~))-l

E(R) = D(R)D(~)(I – S\~)D(~)D(R))-l+

For the existence of nontrivial solutions for the linear
simultaneous equations, (18) and (19), the determinant should

vanish, that is, the following eigenvalue equation should be

solved:

det G=O (20j

where

G =1_ (S~)E@)S~) + S~))D(”)

‘) (~)s$) + S~))D(”J . (21). (S\l E

For open structures, like the NRD waveguide and the groove

guide, the left and right end extend to infinity, so that there

———. e=O.5 mm

1,5 -0

so
DOMINANT MODE

\
,4’ ‘

z“

1.0 -

FREQUENCY (GHz)

Fig. 12. Propagation characteristics of the dominant and the first higher odd
mode in a unilateral finline with mounting grooves. a = 2b = 1.65 mm,

s = 0.11 mm, d = 0.3 mm, t= 5flm, e. = 3.75.

will be no reflections from the two ends. In such cases, the

matrices, D(L) and D(R), representing wave reflections at

the two end boundaries become zero matrices, and the final

eigenvalue matrix G in (21) is much simplified to

G = I – S~)D(%\;)D(M). (22)

With such a treatment of the open ends, we succeed in avoiding

the usual assumption of placing perfect conduct planes on the

two far sides of the guide, as pointed out in the introduction.

By using the transverse resonance condition at the section

with the smallest vertical dimension, we obtain the final

eigenvalue matrix G with the smallest size as the number

of modal terms is the smallest in this region.

The commonly used transverse resonance procedure in other

papers [8], [9], on the contrary, is to treat the cascaded
discontinuities from the left to the right or from the right to

the left in sequence, and then to impose the two end boundary

conditons. This procedure usually results in a large eigenvalue

matrix since the two end sections are large in dimensions in

most practical configurations.

Moreover, we may notice that as the coefficients of the mode
functions in (5) are normalized, the elements in the scattering

matrices, S(L) and S(R), are of order 1; and that the elements

in the diagonal matrices D ‘L), D(M), D(~l exponentially
decay (in the y-direction) for higher evanescent modes, so that

the eigenvalue matrix G in (21) or (22) is diagonal dominant

with the diagonal elements of order L The reduced size of

the eigenvalue matrix and the good property of the matrix

elements enable the numerical computation process to be quite

stable with the determinant of the eigenvalue matrix neither

too large nor too small, thus greatly easing the root searching

process for eigenvalues. This is another merit of our method

against the conventionally used transverse resonance treatment

and is also one of the main different points from the theory of
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Fig. 13. Normalized propagation constant versus frequency in coplanar
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a recent paper [19] which took a similar analysis process for

the characterization of MMIC transmission lines. Usually after

several searching steps, the root of (20) may rapidly converge

to results with good accuracy in the present method.

III. NUMERICAL EXAMPLES AND DISCUSSIONS

The above stated process has been programmed for numeri-

cal calculation. As an illustration of the versatility and validity

of this method, results on the dispersion characteristics of some

waveguiding structures are provided, and comparisons with

previous techniques are made.

A. Ridged Waveguide and Its Variations

Ridged waveguide has been on stage for a long years [13],

but is still receiving attentions up to now, and many of its

variations, such as slotted, dielectric loaded ridged waveguides
and T-septum waveguides, have appeared [14]–[16]. Since

the first complete spectrum analysis of a ridged waveguide

was given by Montgomery [13], who used the Ritz–Galerkin

procedure, most of the papers on ridged waveguides and
its variations published since then [14], [15] followed the

same approach. In their analysis, all of the unknown ex-

pansion modal coefficients of fields remained in the final

eigenvalue matrix, so that the size of the matrix was large

which might cause difficulty in computation. When the number

of subregions increases, this problem becomes even more

serious. A recent paper [16] has used a mixed spectral-

domain method to treat ridged waveguide problems, and it is

more flexible and more numerically efficient than the previous

methods. However, it is actually complicated in mathematical

formulations because of the complicated configurations of the

ridged waveguides with multisubregions. Our theory stated in

Section II is simpler and more versatile.

The frequency dependence of the propagation constant of a

single-ridged waveguide is shown in Fig. 5 which is about the

same for the two dielectric slab loading. As can be seen, our

results agree very well with both calculated results [16] by the

mixed spectral-domain method and the experiment data [17].

Figure 6 shows the dependence of the propagation constant

on the dielectric slab thickness t,and it reveals a marked in-

crease in cutoff wavelength when the dielectric slab thickness

increases, Such a dependence can also be observed in Fig, 7,

which shows the propagation constants as a function of the

septum width s of a T-septum waveguide with and without

dielectric loading.

For the correct convergence of the numerical results by the

mode-matching method, it is well known that the modes in

every subregions should be retained according to the ratios

between the sub-region heights. Taking the structure shown in

Fig. 6 as an example, the mode ratio is approximately taken ac-

cording to the ratio b : c : d, and we found that 3 LSE and LSM

modes in the region of height c, 6 of height d and 15 of height

b, respectively, are adequate for obtaining converged results.

B. NRD Waveguide and Groove Guide

The NRD waveguide and groove guide are two of several

low-loss waveguides proposed for use at millimeter wave-

lengths [4]–[6]. In Fig. 8, the dispersion curve of a nonradiative

alumina waveguide is illustrated, where the solid line indicates

present results, and the dots those of [4] based on the formula-

tion of the H-guide theory [18]. In Fig. 9, comparisons between

measured and theoretical values of the cutoff wavelength AC

for groove guides of various cross sections are provided. The

solid lines represent our theory, the dashed curves are the first-

order approximation theoretical values [6], and the points are

the measured results of Nakahara and Kurauchi [6]. Figure 10

indicates variation of propagation constant with groove guide

aspect ratio b/a, and good agreement has been found between

our theory and the results of Oliner and Lampariello [5]. The

rule of thumb equivalent network analysis in [5] is simple and

very accurate, but is only valid for the dominat mode.

C. Planar Transmission Lines

Among the published rigorous techniques for analyzing

planar transmission lines are the spectral-domain technique

and the singular integral equation method. Although these

techniques have a very good numerical efficiency, they do

not include the effects of metallization thickness and substrate

mounting grooves. The metallization thickness has been taken
into account in [8], [9] using the mode-matching technique,

but all requires an equal number of modal terms in the

subregions forming the guide. As has been shown in [10],

this requirement may violate the edge-condition and may fail

to provide accurate results.

Figure 11 shows the effect of the metallization thickness on

the propagation constants of the first even and odd mode in the

suspended microstrip line. A noticeable effect is only observed

on the dominant mode. On the other hand, the effect of the

substrate mounting groove on the propagation characteristics

is quite significant for both the dominant and the first higher

order mode of the unilateral finline, as shown in Fig. 12. As
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pointed out by [11], the cutoff frequency of the first higher

order mode decreases significantly when the mounting groove

is used, leading to a very large reduction in the single-mode

bandwidth. Finally, the metallization thickness effect on the

propagation constants in coplanar waveguides is illustrated in

Fig. 13. While the influence on the odd mode is negligible,

it is, however, pronounced on the dominant mode over the

whole frequency range. In the above figures, the solid curves

are our results, the dots are those of [11], and the agreements

are excellent.

IV. CONCLUSION

A unified transverse scattering matrix approach has been

presented to analyze transmission line eigenvalue problems.

The formulation allows one to treat a wide variety of waveg-

uiding structures including open structures. Comparisons with

previous approaches prove that it is simple, versatile, accurate,

and efficient. Application of this method to other eigenvalue

problems such as the determination of resonant frequencies of

complex cavities is straightforward.
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